

ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF SIMULTANEOUS ESTIMATION OF ISOSORBIDE DINITRATE AND HYDRALAZINE HCL IN TABLET DOSAGE FORM BY RP-HPLC

G.Santhosh^{1*}, G.Nagasowjanya¹, A. Ajitha¹, Dr.V.UmaMaheshwaraRao²

¹Department of Pharmaceutical Analysis and Quality Assurance ²CMR College of Pharmacy, kandlakoya (v), Medchal road, Hyderabad – 501 401, A.P. India.

ABSTRACT

A simple, precise, rapid, specific and accurate reverse phase high performance liquid chromatography method was developed for simultaneous estimation of Isosorbide Dinitrite and Hydralazine HCl in pharmaceutical dosage form. Chromatographic separation was performed on Agilant Zorbax (C_{18}) (4.6mm x 250mm, 5µm) column, with mobile phase comprising of mixture of buffer (pH6.5, adjusted with potassium dihydrogen phosphate), acetonitrile in the ratio of 70:30 v/v, at the flow rate 0.8 ml/min. The detection was carried out at 274 nm. The retention times of Isosorbide Dinitrite and Hydralazine HCl were found to be 3.6 and 2.7 mins respectively with a run time of 6 mins, theoretical levels for Isosorbide Dinitrite and Hydralazine HCl were 8055 and 7525 respectively, with a resolution of 6.57. As per ICH guidelines the method was validated for linearity, accuracy, precision, limit of detection and limit of quantitation, robustness and ruggedness. Linearity of Isosorbide Dinitrite was found in the range of 50-150 µg/mL and that for Hydralazine HCl was found to be 50-150 µg/mL. The correlation coefficient for Isosorbide Dinitrite and Hydralazine HCl were 1 and 0.999 respectively. The LOD values for Isosorbide Dinitrite and Hydralazine HCl were and 9.8 and 9.6 µg/mL respectively. This demonstrates that the developed method is simple, precise, rapid, selective, accurate and reproducible for simultaneous estimation of Isosorbide Dinitrite and Hydralazine HCl were and 9.8 and 9.6 µg/mL respectively.

Keywords: Isosorbide Dinitrate, Hydralazine HCl, RP-HPLC, Validation.

INTRODUCTION

Isosorbide Dinitrate Fig. (A1) is described chemically as 1,4:3,6-dianhydro-d-glucitol-2,5-dinitrate and it is a white to off-white crystalline powder with the empirical formula $C_6H_8N_2O_8$ and a molecular weight of 236.14 [1-4]. It is freely soluble in organic solvents such as alcohol, chloroform and ether, but is only sparingly soluble in water [5].

Hydralazine Hydrochloride Fig. (A2) is described chemically as 1-hydrazinophthalazine mono hydrochloride and it is a white to off-white crystalline powder with the empirical formula $C_8H_8N_4$ ·HCl and a molecular weight of 196.64. It is soluble in water, slightly soluble in alcohol, and very slightly soluble in ether [6].

MATERIALSANDMETHODS Equipment

Chromatographic separation was performed on HPLC system–Waters e2695 model, PDA Detector, equipped with a solvent delivery pump, sample injector and column thermostats. Empower system softwarewasappliedfordatacollecting and processing.

Chemicals and reagents

Acetonitrile (HPLC grade) was used. Buffer used was pH-6.5 (pH adjusted with potassium dihydrogen phosphate). (Reference standards Isosorbide Dinitrate and Hydralazine HCl were obtained from Rainbow Labs. Isolazine Tablets of Isosorbide Dinitrate (20mg) and Hydralazine HCl (37.5mg) manufactured by Lupin pharmaceuticals Ltd., were procured from local market.

Preparation of standard solutions

Accurately weighed and transferred 80 mg of Isosorbide Dinitrate and 150 mg of Hydralazine HCl working standard into a 50mL clean dry volumetric flask and added about 30mL of diluent. It was sonicated to dissolve completely and made volume up to the mark with the same diluent. (Stock solution). From this, 5 ml of the solution was pipetted into another 25ml volumetric flask and diluted up to the mark with diluent.

Preparation of sample solution

Accurately weighed and transferred tablet powder equivalent to 20 mg of Isosorbide Dinitrate and 37.5 mg of Hydralazine HCl in to a 50mL clean dry volumetric flask and added about 30mL of diluent. It was sonicated to dissolve completely and made volume up to themark with the same diluent. (Stock solution)From this, 5 mL of the solution was pipetted into another 25ml volumetric flask and diluted up to the mark with diluent.

Preparation of buffer

Take 1000mL of HPLC grade water. The pH was adjusted to 6.5 with potassium dihydrogen phosphate [6].

Optimized Chromatographic Conditions

Diluent : Potassium Dihydrogen Phosphate : Acetonitrile. Mobile phase: Buffer p^H 6.5: KH2P04 : Acetonitrile (70:30v/v) Flow rate : 0.8mL/min Column : Agilant Zorbax (C₁₈) (4.6mm x 250mm, 5µm) Detector wavelength : 274nm Injection volume : 10µL

METHODVALIDATION

Linearity

Solutions were prepared under the concentrations of Isosorbide Dinitrate, which corresponding to 50, 75,

Table1.Analysis data of formulation (Isolazine)

100, 125 and 150% respectively, concentrations of Hydralazine HCl which corresponding to 50, 75, 100, 125 and 150 % respectively of the test solution concentration. Each solution was injected, linearity was evaluated by linear-regression analysis [1].

Accuracy

Accuracy was determined by the recovery studies at three different concentrations (corresponding to50, 100 and 150% of the test solution concentration) by addition of known amounts of standard to pre-analysed sample preparation. For each concentration, three sets were prepared and injected [2].

Precision

Precision of an analytical method is usually expressed as the standard deviation or relative standard deviation (coefficient of variation) of a series of measurements [3].

Robustness

The robustness was evaluated by assaying test solutions after slight but deliberate changes in the analytical conditions. Thefactors chosen forhis study were the flow rate (± 0.1 ml/min), temperature. [4].

Limit of detection (LOD) and Limit of quantification (LOQ)

LOD and LOQ was calculated from linear curve using formulae

LOD= $3.3 \times \sigma$ /slope, LOQ= $10 \times \sigma$ /slope (Where σ =the standard deviation of the response And S= Slope of calibration curve) [7]

Specificity

Specificity was checked for the interference of impurities in the analysis of blank solution and injecting sample solution under optimized chromatographic conditions to demonstrate separation of both Isosorbide Dinitrate and Hydralazine HCl from impurities [8-9].

Injection Label claim(mg)		Assay (%)	
Isosorbide Dinitrate	20mg	99.8%	
Hydralazine HCl	37.5mg	99.07	

Table 2.Resultof Linearity

S. No	Isosorbide Dinitrate		Hydralazine HCl		
	Conc. (µg/ml)	Peak area	Conc. (µg/ml)	Peak area	
1	50	3006497	50	2073071	
2	75	4514426	75	3117605	
3	100	6014830	100	4155452	
4	125	7524785	125	5191111	
5	150	9024624	150	6233973	

Table 3. System suitability studies

Parameters	Hydralazine HCl	Isosorbide Dinitrate	Acceptance criteria
Theoretical plates	7525	8055	Not less than 2000
Tailing factor	1.26	1.18	Not more than 2
Resolution	-	6.57	Not less than 2

Table 4. Recovery studies for Isosorbide Dinitrate and Hydralazine HCl

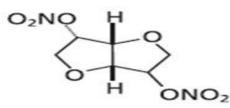
DRUG	Spiked level%	Amount taken (µg/ml)	Amount found Percent recove (µg/ml) n=3		Mean recovery	
Isosorbide Dinitrate	50	159.403	159.41	100		
	100	319.040	318.78	99.92	99,99	
	150	478.443	478.68	100.05	99.99	
Hydralazine HCl	50	297.082	296.52	99.81		
	100	594.600	593.54	100.12	99,99	
	150	891.682	892.17	100.05	99.99	

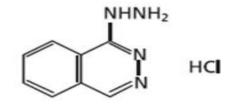
n- Number of replicate injections

Table 5.LODand LOQ for Isosorbide Dinitrate and Hydralazine HCl

DRUG	LOD	LOQ
Isosorbide Dinitrate	2.9538	9.8462
Hydralazine HCl	2.880	9.600

Table 6. Results of Precision


S.No	Sample Weight	Hydralazine HCl	Isosorbide Dinitrate	% Assay	% Assay
1	816.80	4152654	6015301	99.03	99.69
2	816.80	4151358	6014887	99.00	99.68
3	816.80	4157111	6022331	99.14	99.80
4	816.80	4155766	6026107	99.10	99.86
5	816.80	4147812	6012400	98.91	99.64
6	816.80	4163440	6016738	99.29	99.71
Average Assay:				99.08	99.73
STD				0.13	0.09
%RSD				0.13	0.09


Table 7. Results of Robustness study

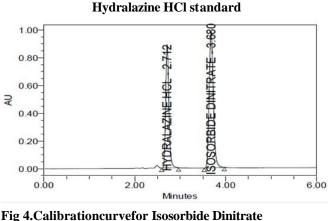

S. no	Parameter	Condition	Theoretical levels		Tailing factor		Retention time	
			Isosorbide Dinitrate	Hydralazine HCl	Isosorbide Dinitrate	Hydralazine HCl	Isosorbide Dinitrate	Hydralazine HCl
1	1 Flow rate	0.7min/ml	9751	8885	1.16	1.26	4.63	3.35
1		0.9min/ml	7500	6584	1.17	1.28	3.09	2.23
2	2 Temperature	$24^{\circ}C$	8064	7531	1.16	1.25	3.69	2.71
2		$26^{\circ}C$	8099	7583	1.17	1.25	3.70	2.69

Fig 1. The chemical structure of Isosorbide Dinitrate(A1) And Hydralazine HCl (A2) (A1)

(A2)

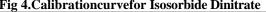
9024624

200

7524785

150

6014830


y = 60172x

 $R^2 = 1$

Area

- Linear (Area)

Fig 2. Chromatogram of Isosorbide Dinitrate and

4514426

Concentration(ug/ml)

3006497

RESULTS AND DISCUSSION

50

10000000

9000000

8000000

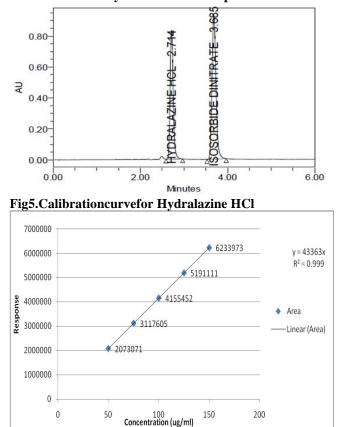
7000000

6000000

5000000

4000000

3000000


2000000

1000000 0

0

Response

Several mobile phase compositions were tried to resolve the peak of Isosorbide Dinitrate and Hydralazine HCl. The mobile phase containing buffer 6.5 (potassium dihydrogen phosphate) : Acetonitrile in proportion of 70:30v/v was found ideal to resolve the peak of Isosorbide Dinitrate and Hydralazine HCl. Retention time of Isosorbide Dinitrate and Hydralazine HCL were 3.6 and 2.7 min respectively (Figure 2&3). Result of assay is shown in Table-1. The proposed method was found to be linear in concentration range 50-150µg/ml for Isosorbide Dinitrate and 50-150µg/ml for Hydralazine HCl. The data was shown in Table-2 and Figure 4&5. System suitability parameters were evaluated and results shown in (Table-3), which were with in acceptance criteria. The mean percentage recovery for Isosorbide Dinitrate and Hydralazine HCl was found to be 99.99% and 99.99% respectively, which are well within the limit and hence the method was found to be accurate (Table-4). LOD and LOQ values were 2.9538µg/mL and 9.846 µg/mL for Isosorbide Dinitrate and 2.880µg/mL and 9.600µg/mL

Fi 3. Chromatogram of Isosorbide Dinitrate and Hydralazine HCl sample

Hydralazine HCl (Table-5). Results of precision were showninthe (Table-6). The robustness of the method was investigated by varying experimental conditions such as changes in flow rate and temperature. The result obtained implies method is robust for routine qualitative analysis (Table-7).

CONCLUSION

The proposed RP-HPLC method was validated as per International Conference on Harmonization (ICH) guidelines, and found to be applicable for routine quality control analysis for the simultaneous estimation of Isosorbide Dinitrate and Hydralazine HCl using isocratic mode of elution. The results of linearity, precision, accuracy and specificity, proved to be within the limits. The proposed method is highly sensitive, reproducible, reliable, rapid and specific.

ACKNOWLEDGEMENT

The authors are thankful to Rainbow Labs, Hyderabad.

REFERENCES

1. Gelber I et al., Development and validation of RP-HPLC method for estimation of Isosorbide Dinitrite in pharmaceutical dosage forms. JInternational Journal of Pharmacy, 3(1), 2011, 166-169

- 2. Olsen *et al.*, Simultaneous Determination of isosorbide dinitrite and nitroglycerine in combined Pharmaceutical Dosage form by New RP-HPLC Method. *JResearch Journal of Pharmaceutical, Biological and Chemical Sciences*, 3(1), 270.
- 3. Ludden TM *et al.*, reported on validation of hydralazine HCl tablet dosage form by RP-HPLC method. *J An International Journal of Advances in Pharmaceutical Sciences*, 3(5), 2010, 325-332.
- 4. Beckett AH, Stenlake JB. Practical Pharmaceutical chemistry, 4th edition, part 2, CBS publication and distributors, 1997, 275-337.
- 5. Indian Pharmacopoeia. Government of India, Ministry of health and welfare published by Indian Pharmacopoeia Commission, 2, 2007, 576, 578.
- 6. United States of Pharmacopoeia. United States Pharmacopoeia Convention, Rockville, 2009, 2231.
- 7. Willard HH, Merritt LL, Dean JA, Settle FA. *Instrumental Methods of Analysis*,7th edition, CBS Publishers and Distributers, New Delhi, 518-521, 580-610.
- 8. Snyder R, Kirkland J, Glajch L. *Practical HPLC method development*, II Ed, A Wiley International publication, 1997, 235,266-268,351-353.653-600.686-695.
- 9. Skoog DA, Holler J, Nieman TA. Principle of Instrumental Analysis, 5th ed., 778-787.
- 10. Sharma BK. Instrumental Methods of Chemical Analysis, GOEL Publication House, Meerut, 133-161, 68-80, 114-165, 286-320.
- 11. Rang & dales Pharmacology 6th ed., Elsevier publishers, 2007.
- 12. Gurdeep RC, Sham KA. Instrumental Methods of Chemical Analysis; 5th edition, Himalaya Publishing House, 2002.
- 13. Swarbrick J and Boylan J. Encyclopedia of pharmaceutical technology, volume I, Marcel Dekker Inc. New York, 1998, 217-224.
- 14. ICH guidelines, validation of analytical procedure: methodology Q2B, ICH. Hormonized Tripartite Guidelines, 1996.