e-ISSN: 2249 – 7781 Print ISSN: 2249 – 779X

International Journal of Pharmaceutical Research & Analysis

www.ijpra.com

Research article

ANALYTICAL METHOD DEVELOPMENT AND VALIDATION BY NEW RP-UPLC METHOD FOR THE DETERMINATION OF DOLUTEGRAVIR SODIUM IN TABLET DOSAGE FORM

P.V. Murali Krishna*¹, Rajesh Asija², M. Purushothaman³

- *1 Associate Professor, Vasavi Institute of Pharmaceutical Sciences, Kadapa, Andhra Pradesh, India.
- ² Professor, Sunrise University, Alwar, Rajasthan, India.
- ³ Principal, Scient Institute of Pharmacy, Hyderabad, Telangana, India.

ABSTRACT

A simple accurate, precise rapid isocratic UPLC method development for the simultaneous estimation of Dolutegravir Sodium in tablet dosage form. The chromatographic system was carried on Acquity BEH C18 (50*3.0mm. 1.7µm) using mobile phase consisting a mixture of 70 volmes of Dipotassium hydrogen orthophosphate of 30 volumes of Methanol, with detection of 260 nm. The retention time of Dolutegravir Sodium was found to be 2.857 min calibration curve was linear over the concentration range of Dolutegravir Sodium, the correlation coefficient for both peak was found to be 0.998 respectively. All the analytical validation parameters were determined and found in the limit as per ICH guidelines.

Keywords: Dolutegravir Sodium, UPLC.

INTRODUCTION

Ultra Performance Liquid Chromatography

Chromatography is a non-destructive procedure for resolving a multi-component mixture of traces, minor or constituents in to individual fractions [1]. It is a method of separating a mixture of components in to individual components through a porous medium under the influence of solvent [2-5]. For many years, researchers have looked at "fast LC" as a way to speed up analyses. The need for speed, the availability of affordable and easy to use mass spectrometers. Smaller columns and faster flow rates (amongst other parameters) have been used [6]. Elevated temperature, having the dual advantages of lowering viscosity, and increasing mass transfer by increasing the diffusivity of the analytes, has also been investigated [7]. However, using conventional particle sizes and pressures, limitations are soon reached and compromises must be made, sacrificing resolution. HPLC technology simply doesn't have the capability to take full advantages of sub $2\mu m$ particles. UPLC can be regarded as new invention for liquid chromatography [8].

REVIEW OF LITERATURE

Srinivasa Rao Avanapu, A simple and rapid high performance liquid chromatographic method was developed and validated for simultaneous estimation of abacavir, lamivudine and dolutegravir in their tablet dosage form [9]

P. Saidulu The objective of this research was to develop simple, rapid, precise, accurate and economical stability-indicating reversed phase (RP) HPLC assay method and validated for simultaneous estimation of Lamivudine, Abacavir and Dolutegravir in bulk laboratory synthetic mixture and their combined dosage form [10].

Jomol Joseph A new method was established for simultaneous estimation of Dolutegravir and Rilpivirine by RP-HPLC method. The - Validation of Analytical Procedures: Text and Methodology [11].

chromatographic conditions were successfully developed for the separation of Dolutegravir and Rilpivirine.

Drug Profile

Dolutegravir is a HIV-1 intergrase inhibitor that blocks the strand transfer step of the integration of the viral genome into the host cell

MATERIALS & METHODS

Table 1. Instrumentation

i ubic i. ilibu ullicitudioli			
UV-Visible	Nicolet evolution 100		
UV-Visible	Vision Pro		
UPLC software	Open lab EZ chrome		
UPLC	Agilent Technologies		
Ultra sonicator	Citizen, Digital Ultrasonic		
pH meter	Global digital		
Electronic balance	Mettler Toledo		
Syringe	Hamilton		
UPLC Column	Inertsil ODS		

Table 2. Reagents and Chemicals

Water		HPLC Grade
Methanol		HPLC Grade
Potassium	Dihydrogen	AR Grade
Acetonitrile		HPLC Grade
Dipotassium	hydrogen	AR Grade
Orthophosphoric ac	id	HPLC Grade

Working/Reference Standards

Dolutegravir sodium (API) Gift samples obtained from Chandra Labs, Hyderabad.

MATERIALS & METHODS:

Preparation of Standard Solution of Dolutegravir Sodium:

Weigh accurately 10 mg of Dolutegravir sodium in 25 ml of volumetric flask and dissolve in 25ml of mobile phase and make up the volume with mobile phase. From above stock solution 20 μ g/ml of Dolutegravir sodium is prepared by diluting 0.5ml to 10ml with mobile phase. This solution is used for recording chromatogram.

Preparation of Sample Solution of Dolutegravir Sodium

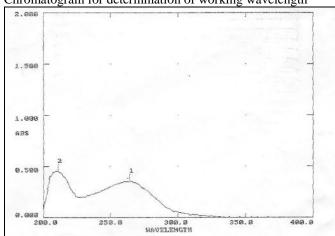
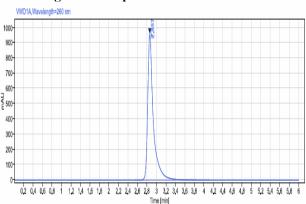
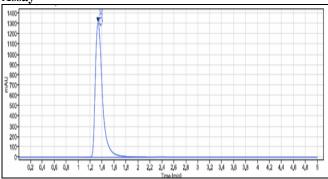

Weigh accurately 10 Tablets Instgra -50~mg weigh accurately 10 mg of Dolutegravir sodium in 25 ml of volumetric flask and dissolve in 25ml of mobile phase and make up the volume with mobile phase. From above stock solution 20 $\mu g/ml$ of Dolutegravir sodium is prepared by diluting 0.5ml to 10ml with mobile phase. This solution is used for recording chromatogram.

Table 3. Chromatographic Conditions


Mobile phase	K ₂ HPO ₄ : Methanol (70 : 30)		
рН	3.0		
Column	Acquity BEH C18 (50*3.0mm.		
	1.7µm)		
Flow rate	1.0 ml/min		
Column	Room temperature(20-25°C)		
temperature			
Sample	Room temperature(20-25°C)		
temperature			
Wavelength	260		
Injection volume	20 μl		
Run time	6 min		

RESULT AND DISCUSSION

Chromatogram for determination of working wavelength



Chromatogram For Optimized Concentration

S.N o.	Name	Rt (min)	Peak	Theorit ical Plates	0	Resol ution
1	DOLUTEG RAVIR SODIUM	2.8 57	7974. 22	3875	1.65	-

Chromatogram of Assay sample preparation

Table 4. Assav Results

Dolutegravir sodium				
	Standard Area	Sample Area		
Injection-1	7972.48	7955.89		
Injection-2	7967.99	7957.5		
Injection-3	7968.81	7961.37		
Injection-4	7970.96	7952.04		
Injection-5	7978.3	7960.09		
Average Area	7971.71	7957.38		
Standard deviation	4.09			
%RSD	0.05			
Assay(%purity)	99.82			

Table 5. Accuracy

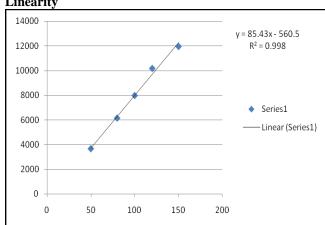

% Recovery Level	Area	Concent ration Added	Concentr ation Recovere d	%Recove	Aver age
50% _01	7004575	250	252.18	100.9	
50% _02	7020900	250	252.77	101.1	
50% _03	7002470	250	252.11	100.8	
100% _01	13910853	500	500.83	100.2	
100% _02	13902676	500	500.53	100.1	100.5
100% _03	13701006	500	493.27	98.7	
150% _01	21010188	750	756.42	100.9	
150% _02	21026894	750	757.02	100.9	
150% _03	21021825	750	756.84	100.9	

Table 6. Method precision

Dolutegravir so	odium		
S.No.	RT	AREA	
1	2.857	7984.67	
2	2.857	7975.66	
3	2.856	7972.43	
4	2.857	7970.17	

5	2.856	7967.67	
6	2.857	7975.88	
AVG	2.856	7974.41	
SD	0.0004	5.93	
%RSD	0.014	0.074	

Linearity

ROBUSTNESS

Table 7. Result of Robustness Study

Chromato hic change		Rt(min	Tailing Factor	Theoret ical Plates	%RSD for Standar d areas
Flow rate	0.8	4.290	1.58	4686	0.16
(mL/min)	1.2	2.143	1.66	3339	0.24
Temperat	35	2.882	1.67	3943	0.08
ure	45	2.839	1.68	3807	0.02

Table 8. Ruggedness

DOLUTEGRAVIR SODIUM	%Assay
Analyst 01	99.77
Analyst 02	99.80
%RSD	0.13

DISCUSSION

Assay

The amount of Dolutegravir sodium present in the taken dosage form was found to be 99.82 % respectively.

Accuracy

The percentage mean recovery of Dolutegravir sodium is 100.50%.

System Suitability

The % RSD for the retention times and peak area of Dolutegravir sodium were found to be less than 2%.

Linearity and Range

The correlation coefficient for linear curve obtained between concentration vs. Area for standard preparations of Dolutegravir sodium is 0.998.

Precision

Test results for Dolutegravir sodium are showing that the %RSD of Assay results are within limits.

Robustness

The system suitability parameters were within limit at all variable conditions.

Ruggedness

The % RSD between two analysts Assay values not greater than 2.0%, hence the method was rugged.

CONCLUSION

The validated method is found to be Specific, Linear, Precise, Accurate, Robust and Rugged for the estimation of Dolutegravir sodium in tablet dosage form.

Hence it is concluded that the assay method is found to be valid in terms of reliability, precision, accuracy and specificity for routine analysis as well as for stability analysis.

ACKNOWLEDGEMENT

Nil

CONFLICT OF INTEREST

No interest

REFERENCES

- 1. Chatwal RG and Anand KS. High performance liquid chromatography. Instrumental methods of chemical analysis, 5thed.; Himalaya publishers, Mumbai, 2010, 2.570-2.629.
- 2. Sharma BK. High performance liquid chromatography. Instrumental methods of chemical analysis, 24th ed.; Goelpublishers, Meerut, 2005, 295 300.
- 3. Dong WM. HPLC instrumentation and trends. Modern HPLC for practicing scientists, USA, 2006; 5-10, 78-110.
- 4. http://www.comsol.com/stories/waters_corp_hplc_systems/full/ HPLC diagram
- 5. www.sanderkok.com/techniques/hplc/eluotropic series extended.htm
- 6. Swartz ME and Ira Krull S. Analytical method development. Analytical method development and validation, Marcel Dekker, Inc: New York, 2009, 17-80.
- Satinder A and Dong MW. Method development and validation. Pharmaceutical analysis by HPLC, New York, 2005, 16-70.
- 8. Snyder RL, Kirkland JJ, Glajch LJ. Getting Started. Practical HPLC Method Development, New York, 1997, 30-100.
- 9. http://www.sigmaaldrich.com/etc/medialib/docs/Aldrich/General_Information/labbasics_pg144.Par.0001.File.tmp/labbasics_pg144.pdf.
- 10. ICH, Text on Validation of Analytical Procedures, ICH Q2A, International Conference on Harmonisation, IFPMA, Geneva, 1995, 2-3, A–1 to A–3.
- 11. ICH. Validation of Analytical Procedures: Methodology, ICH Q2B, International Conference on Harmonisation, 1996, 1-3.

Cite this article:

Murali Krishna PV, Rajesh Asija, Purushothaman M. Analytical Method Development and Validation By New RP-UPLC Method For The Determination Of Dolutegravir Sodium In Tablet Dosage Form. *International Journal of Pharmaceutical Research & Analysis*, 2018; 8(2): 22-25.